Medical Therapies on the Horizon

Drs. Bowlus, Selmi, Hirschfield, Melum and Zern

- Targeting inflammatory cells
- Antibiotics/Probiotics
- INT-747
- Novel targets based on genetic studies
- Stem cells

Lymphocyte Homing

α4β7+CCR9+ Liver Lymphocytes in PSC

Eksteen, B, et al. J. Exp. Med. 2004;200(11):1511-1517.

Current and Future Prospects

- α4 Blocker (natalizumab)
 - Minimally effective in Crohn's disease
 - Currently use for Multiple Sclerosis
 - Risk of brain disease (PML) but rare
- α4β7 Blocker (vedolizumab)
 In phase III trials for Crohn's disease and UC
- CCR9 Blocker (CCX-282; Traficet-EN)
 Now in phase III study for Crohn's disease

Developing an $\alpha 4\beta 7$ -integrin antagonist

Aina OH M et al. Mol Pharm 2007. 4(5): 631-51.

PROBIOTICS AND ANTIBIOTICS

Carlo Selmi

Department of Internal Medicine IRCCS Istituto Clinico Humanitas University of Milan

Division of Clinical Immunology Department of Internal Medicine University of California, Davis

INTESTINAL FLORA

Thousands of commensal bacterial and fungal species generate a complex micro-environment called:

"INTESTINAL FLORA".

It grows and co-evolves with the host, participating to:

- DIGESTION OF NUTRIENTS
- PROTECTION OF MUCOSA
- DEVELOPMENT OF A HEALTHY GUT
- THE EVOLUTION OF A BALANCED MUCOSAL IMMUNE SYSTEM.

PROBIOTICS

Intestinal flora status can be influenced by administration of exogenous PROBIOTICS.

WHO DEFINITION: "PROBIOTICS ARE LIVE MICROORGANISMS WHICH, WHEN CONSUMED IN ADEQUATE AMOUNTS AS PART OF FOOD, CONFER A HEALTH BENEFIT ON THE HOST".

MECHANISMS OF ACTION

Several studies demonstrate the great properties of immunomodulation on intestinal epithelial cells (IEC) and immune system cells (ISC).

Probiotics explain their actions through:

- **PRODUCTION OF ANTIBACTERIAL SUBSTANCES**
- SECRETION OF MUCOSAL CYTOPROTECTIVE AGENTS
- COMPETITIVE INHIBITION OF PATHOGENS ADHERENCE
- ENHANCING BARRIER FUNCTION AND IMMUNE ROLES OF IEC
- REGULATION OF MUCOSAL IMMUNE RESPONSES

IMMUNOMODULATORY ACTIVITY

Probiotics regulate immunologic responses balancing the interactions between exogenous microorganisms and local ISC in both hyper or hypo activation status.

- ENHANCING HOST INNATE IMMUNITY
- INCREASING ANTI-INFLAMMATORY CYTOKINES
- SUPPRESSING PRO-INFLAMMATORY CYTOKINES
- UP-REGULATING HOST DEFENCES AGAINST INFECTION

PROBIOTICS AND INFLAMMATORY BOWEL DISEASES (IBD)

THE INTAKE OF PROBIOTICS COULD IMPROVE PATIENTS CONDITIONS REDUCING DISEASE ACTIVITY.

RATIONALE:

Counteracts the abnormal immune response against commensal flora.

EVIDENCE:

Double blind clinical trials conducted with probiotic mixture (VSL#3): reduced chronic relapsing pouchitis.

PROBIOTICS AND PSC

RATIONALE:

- 90% of PSC patients are affected by IBD.
- The main hypothesis refers PSC as a translocation of a pathologic process from the bowel to the liver.

AIM:

- Liver damage could be *REDUCED* extinguishing IBD activity.
- Monitoring bowel disease it will be able to *PROTECT* and *PREVENT* biliary tree damage.

RESULTS:

Nowadays there is not any clinical trials that sustains the use of probiotics in PSC patients. Further studies are required.

VANCOMYCIN (I)

Bactericidal antibiotic poorly adsorbed by intestinal tract.

ACTION:

Given orally it acts on gut Gram positive bacteria, modifying the composition of intestinal flora.

CLINICAL EVIDENCE:

A study on 14 PSC + IBD pediatric patients treated only with sulfasalazine and vancomycin (50mg/kg die) reported promising data.

Davies et al, J Pediatr Gastroenterol Nutr, 2008.

VANCOMYCIN (II)

Cirrhotic Patients

Davies et al, J Pediatr Gastroenterol Nutr, 2008.

VANCOMYCIN (III)

Davies et al, J Pediatr Gastroenterol Nutr, 2008.

Novel drug targets based on genomic studies

PSC partners meeting, Sacramento, April 30th, 2011

Espen Melum, MD, PhD

Norwegian PSC Research Center Oslo University Hospital, Rikshospitalet Oslo, Norway

and

Division of Gastroenterology, Hepatology and Endoscopy Harvard Medical School / Brigham and Women's Hospital Boston, MA

Beyond the horizon

– EXAMPLE FROM IBD

Potential for patient tailored treatment

Environmental factors

Breaking clinical phenotypes into molecular phenotypes

"HITCHHIKING" WITH OTHER CONDITIONS

Dedicated genotyping arrays

- Metabo Chip
- Cardio-Metabo Chip

→ Immunochip

The Immunochip Project

The immunochip project

Example: Overlapping risk factors for PBC

Ustekinumab (anti-p40):

- Psoriasis: Effective
- Crohn's: Suggestive
- MS: Not effective
- Sarcoidosis: Ongoing
- PBC ???

New Therapies- UDCA and beyond

PSC Partners 2011 Gideon Hirschfield

Conflict of interest statement

Company Name	Relationship
Intercept Pharma	Consultant, Investigator
Axcan Pharma	Speaker, Consultant
Centocor	Advisory board, Consultant
BMS	Investigator
Boehringer Ingelheim	Investigator
Tibotec	Investigator
Sanofi-Aventis	Advisory board
Merck	Speaker, Research support
Roche	Speaker

Over past 24 months

Bile Acids: Detergents and Homeostatic Regulators

- Detergents in gut Solubilize fats in intestine \rightarrow absorption
- Farnesoid-X Receptor Liver, bile ducts, fat
 - Nuclear receptor for bile acid signaling
 - Natural ligand: Chenodeoxycholic acid
 - Bile acid synthesis regulation
 - Hepatic regeneration, intestinal bacterial overgrowth/translocation protection
 - Modulation of insulin sensitivity & adiposity

Obeticholic Acid FXR Agonist

6α-Ethyl Chenodeoxycholic Acid - INT-747

Obeticholic Acid [OCA]

CDCA chenodeoxycholic acid UDCA ursodeoxycholic acid

⁻ 2 log ↑ FXR agonism

Anti-Cholestatic Effects of OCA

Lithocholic acid (LCA) model

Data from C. Clerici ; Pellicciari et al., J. Med. Chem., 2002;45:3569-3572

Study 747-201 – PBC MONOTHERAPY

% Δ AP By Visit – Patients Completing Study

γ-Glutamyl Transpeptidase - γGT

Day of Visit

lgM

Pruritus as AE – Incidence by Dose

Dose Response Study Design – Addition to UDCA

% ∆ By Visit – Alkaline Phosphatase - ITT

Hepatology 2010; 52(4); 357A

Alkaline Phosphatase

Mean values + SEM

Hepatology 2010; 52(4); 357A

Pruritus as AE – Incidence by Dose

Hepatology 2010; 52(4); 357A

Pruritus - Discontinuations

Hepatology 2010; 52(4); 357A

Can Stem Cell Transplantation Replace Whole Organ Transplantation ?

Mark A. Zern, M.D. **Professor of Medicine** Fred and Pat Anderson Family Professor of **Transplant Research Director, Transplant Research Program** UC Davis Medical Center

Differentiation Protocol

hES C Induction of DE (Nodal/Activin A)

Differentiation/maturation

no serum low serum

FGF4, HGF, BMP2/4 10-14d FGF4, HGF OM until use

Albumin expression in human iPSC-derived hepatocytes

Serum Levels of Human Albumin in Transplanted Mouse

Adult Bone Marrow-Derived Stem Cell Therapy In Egyptian Patients with Chronic Liver Disease

Hosny Salama and Abdel Zekry- Egypt Nagy Habib - UK Elizabeth Huttinger, Cheryly Vigen, Wendy Burke, Omar Alfi, Mark A. Zern, -US

Clinical Study

 57 patients with end-stage liver disease, mostly HCV, receive autologous CD34+ stem cells that have been amplified and differentiated towards hepatocytes in culture, then reinfused by portal veins or hepatic arteries. All followed for at least 26 weeks.

Bilirubin

Can Liver Cell Transplantation Replace Whole Organ Transplantation?

Certainly not in the near future,

But with continued research.... There are real possibilities on the horizon

