

PSC Partners Seeking A Cure

2010 Conference Agenda

In Conjunction with The Liver Center at Yale School of Medicine

The Natural Course of PSC: Treatment and Managing Symptoms

Pramod K. Mistry, Ph.D., M.D., F.R.C.P. Professor of Pediatrics and Medicine, Medical Director, Pediatric Liver Transplant Program Yale School of Medicine

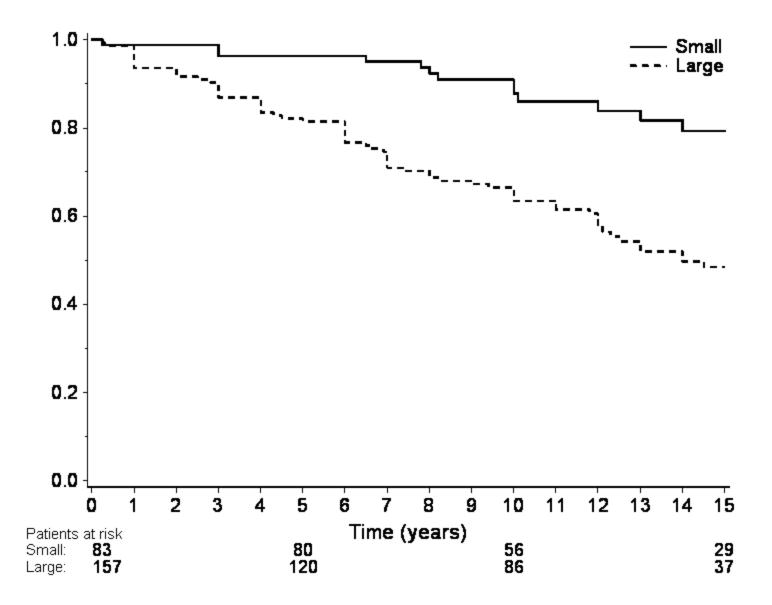
PSC is a Rare Disease (i.e., <200,000 affected patients)

Region (Author) Publication	Time interval	Population	Number of cases of PSC	Incidence (per 100,000/year)	Prevalence (per 100,000)
Olmsted County, MN (Bambha et al.) Gastroenterology 2003	1976-2000	NA	22	0.9	13.6

NA, not available

Estimated total affected US patients: 41,752 (1 in ~ 7,300)

Transplants for PSC: ~200/year, i.e., 0.06 per 100,000/yr


Office of Rare Diseases Research

National Institutes of Health

PSC is highly heterogeneous

- Large duct PSC
- Small duct PSC
- PSC AIH overlap
- IgG4 positive PSC and AIP

Survival of small-vs.large duct PSC

Natural history determined by presence/absence of symptoms: Asymptomatic patients have non-progressive or slowly progressive disease

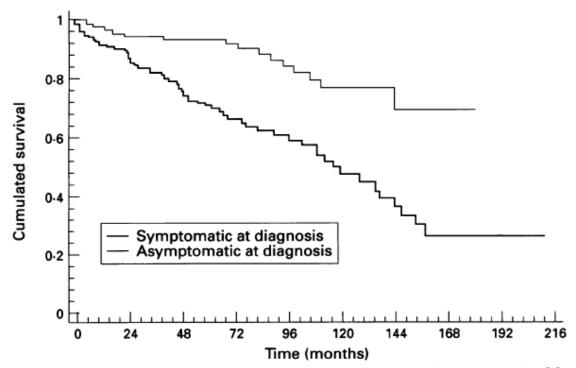
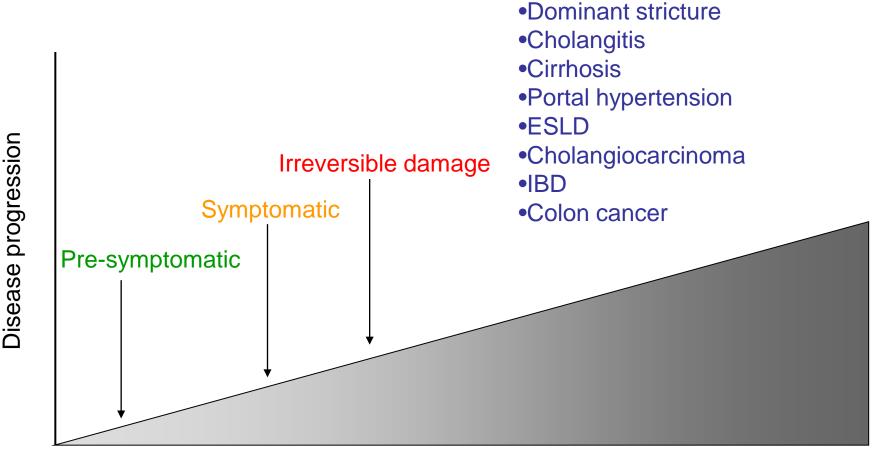
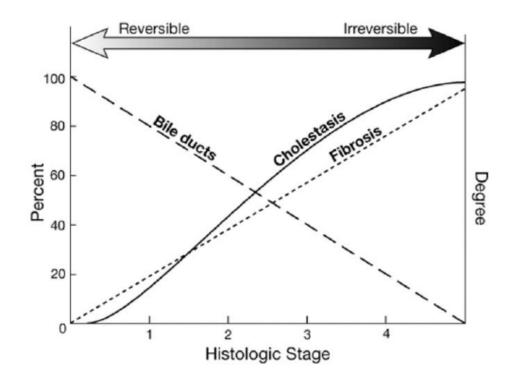



Figure 1: Kaplan-Meier estimated survival curves of symptomatic and asymptomatic PSC patients (p < 0.001).

Helzberg, H, Petersen JM and Boyer JL, 1987 Broome et al, 1996


PSC modeled as a chronic progressive disease

Birth

Death

Natural History of PSC

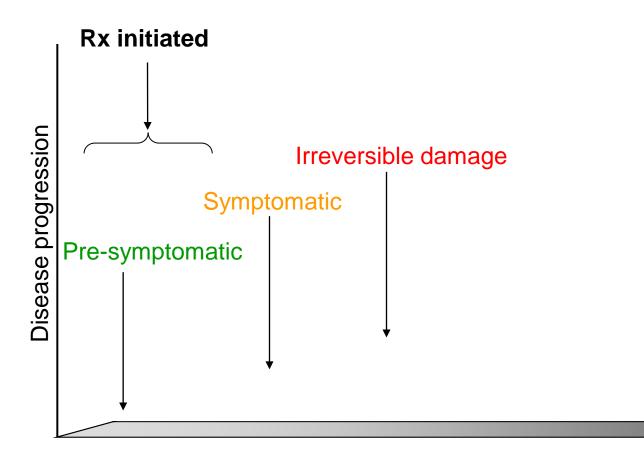
Lindor K, et al, 2006

PSC Progresses at Variable Rates to Biliary Cirrhosis

Reference (year)	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Wiesner ² (1989)	Age	Bilirubin	Histology	Hemoglobin	IBD
Farrant ²⁵ (1991)	Age	Alkaline Phosphatase	Histology	Splenomegaly	Hepatomegaly
Dickson ²⁶ (1992)	Age	Bilirubin	Histology	Splenomegaly	
Broome ²⁷ (1996)	Age	Bilirubin	Histology		
Okolicanyi ²⁸ (1996)		Cholesterol	ALT		
Kim ²⁹ (2000)	Age	Bilirubin	AST	Albumin	Variceal Bleeding

Table 2. Prognostic Models in PSC: Factors

Abbreviations: Alk Phos, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; IBD, inflammatory bowel disease.


Median 'survival' (time to transplant) after diagnosis: 10-12 yrs

Natural history is highly variable Not possible to predict individual patient prognosis

Therapeutic Goals

- Cure PSC
- Improve QoL: relieve symptoms
- Prevent disease progression
- Prevent hepatobiliary cancer
- Prevent colon cancer in PSC/IBD

Prevention based on early intervention

Birth

Death

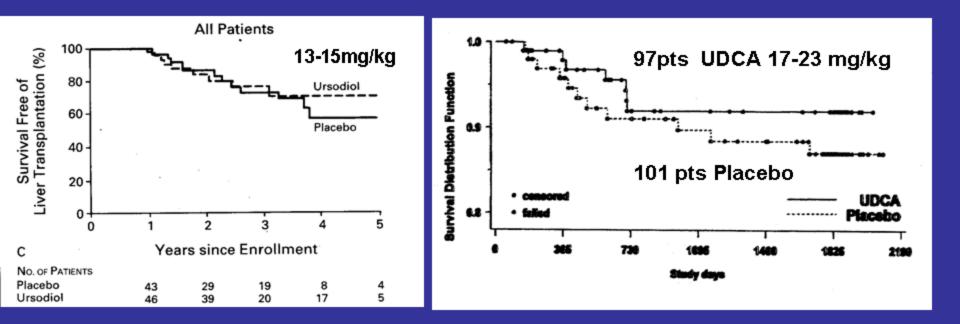
Ten steps on an ideal journey

- 1. Assemble your team
- 2. Hepatologist
- 3. Gastroenterologist
- 4. Primary care physician
- 5. Time to talk about implications of results
- Regular review with a 'strategic perspective 'looking beyond the next appointment'
- 7. Understand disease trajectory
- 8. Care of associated medical conditions
- 9. Participate in research studies
- 10. Become an advocate: 'PSCer'

Physician's approach to PSC

- Be optimistic
- Be problem oriented
- Be cautious
- Collaborate
- Be available
- Provide confidence through information

Managing PSC

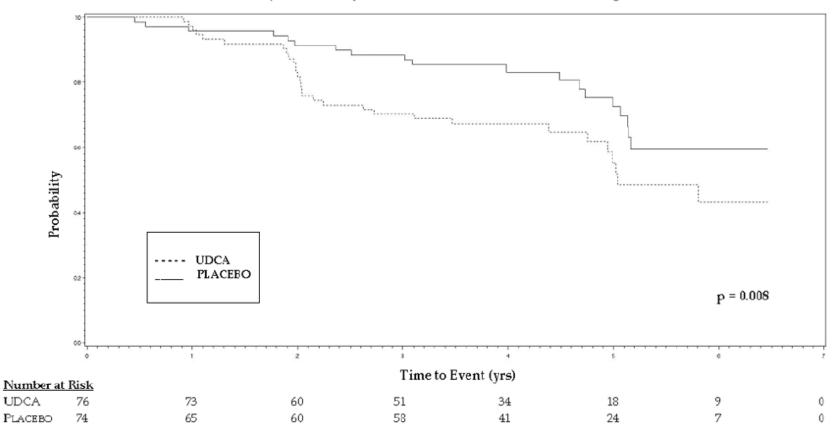

- Dominant strictures
- Cholangitis
- Pruritus
- Portal hypertension
- Metabolic bone disease
- IBD
- Cancer surveillance: CCC, gallbladder, colon
- Optimal timing of liver transplantation when indicated

Medical Therapy: Past disappointments

- Steroids
- Azathioprine
- Cyclosporine, Tacrolimus
- Methotrexate
- antiTNF
- Colchicine
- Sylimarin

What about UDCA?

Low dose UDCA*vs Mod dose in PSC** Survival Free of Liver Transplantation

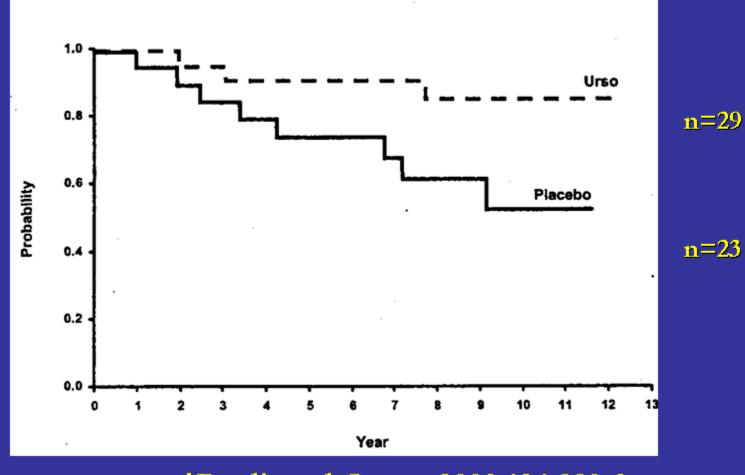

*Lindor et al;N Engl J Med 1997

**Olsson et al;J Hepatol 2004

Death /Transplantation: 7.2% UDCA vs 10.9% placebo (ns)

High Dose UCDA Trial

Model of All Primary Endpoints Adjusted for Mayo Risk Score, Presence of Varices, and Stage


Lindor et al, 2009

UCDA in PSC: Conclusion

- High dose 25-30 mg/kg not indicated ? Toxic level of UDCA
- Lower doses safe but / efficacy to alter natural history
- AASLD guideline 2010: 'stop UCDA'

Alternative approach: invidualize UDCA therapy

Proportion of PSC/UC pts free of colonic cancer / dysplasia*

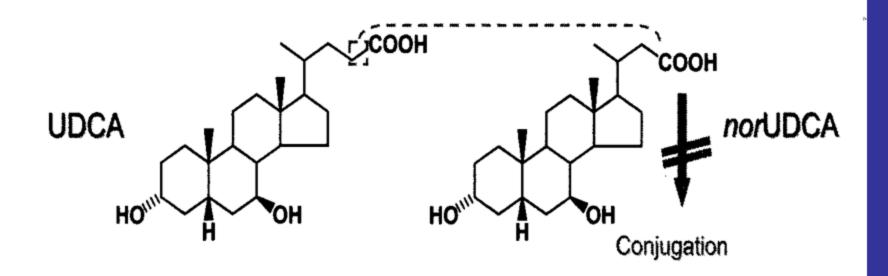
*Pardi et al,Gastro 2003;124:889-3

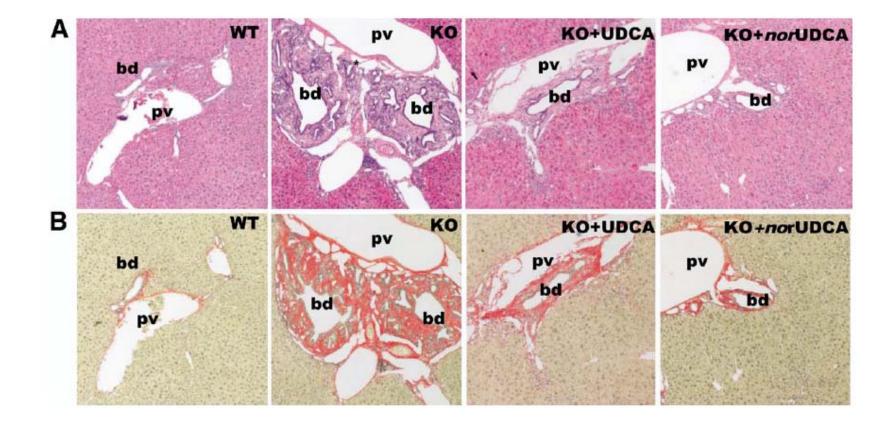
New Bile Acids Nor-UCDA, c23 Homolog of UDCA

- Biliary enrichment with hydrophillic norUDCA
- Bicarbonate-rich choleresis
- Induction of alternative bile acid detoxification
- Direct anti-inflammatory and anti-fibrotic properties

ATTRACTIVE CANDIDATE FOR TREATMENT OF PSC

Nor-UDCA




Figure 2 Chemical structure of *nor*UDCA and UDCA. *nor*UDCA (right) is a side chainshortened C_{23} homologue of UDCA (left) and possesses one less methylene group in its side chain (dotted box), conferring relative resistance to amide conjugation

GASTROENTEROLOGY 2006;130:465-481

24-norUrsodeoxycholic Acid Is Superior to Ursodeoxycholic Acid in the Treatment of Sclerosing Cholangitis in Mdr2 (Abcb4) Knockout Mice

PETER FICKERT,* MARTIN WAGNER,* HANNS-ULRICH MARSCHALL,[†] ANDREA FUCHSBICHLER,[§] GERNOT ZOLLNER,* OLEKSIY TSYBROVSKYY,[§] KURT ZATLOUKAL,[§] JIE LIU,[¶] MICHAEL P. WAALKES,[¶] CATHLEEN COVER,[∥] HELMUT DENK,[§] ALAN F. HOFMANN,[#] HARTMUT JAESCHKE,[∥] and MICHAEL TRAUNER*

*Department of Medicine, Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria; *Karolinska University Hospital Huddinge, Stockholm, Sweden; [§]Institute of Pathology, Medical University Graz, Graz, Austria; [¶]Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institutes of Environmental Health Sciences, Research Triangle Park, North Carolina; [∥]Liver Research Institute, University of Arizona, Tucson, Arizona; and [#]Department of Medicine, University of California, San Diego, California

Farsenoid X Receptor (FXR): the Endogenous Bile Acid Sensor

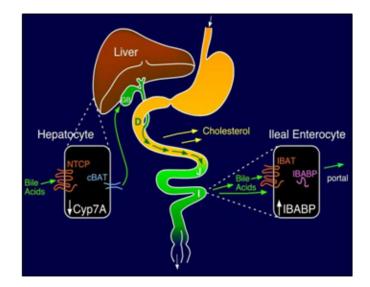
FXR

Nuclear receptor expressed in liver, intestine, kidney, adrenal glands

 Discovery: FXR - bile acid receptor: CDCA natural ligand (1999)

CDCA (primary bile acid)

GW4064


 Potent FXR agonist as a chemical tool compound developed (2000)

CYP7A1, SHP, BSEP, MRP2, MDR3, I-BABP

 Hepatocyte FXR target genes identified (2000)

EASL Single Topic Conference Trauner M, 2006

 FXR role in bile flow and biosynthesis regulation (2001)

INT-747: First-in-class FXR Agonist

 INT-747 is 6α-ethyl-chenodeoxycholic acid (6-ECDCA) with generic name obeticholic acid

- Semi-synthetic derivative of CDCA
- Potent FXR agonist
 - UDCA : no FXR-mediated effects
 - INT-747: ~100x more potent FXR agonist than CDCA
 - INT-747 is a selective FXR agonist

Potential Indications for FXR Drugs

Liver and biliary tract

Cholestatic disorders

- Primary biliary cirrhosis (PBC)
- Primary sclerosing cholangitis (PSC)
- Intrahepatic cholestasis of pregnancy
- Biliary atresia

Fibrosis associated with:

- Nonalcoholic fatty liver disease (NAFLD)/ nonalcoholic steatohepatitis (NASH)
- Chronic viral hepatitis (HBV & HCV)
- Alcoholic liver disease
- Autoimmune hepatitis

Liver transplantation Cholesterol gallstone disease

Intestinal

Bacterial overgrowth , Inflammatory bowel diseases (IBD) * Colon cancer

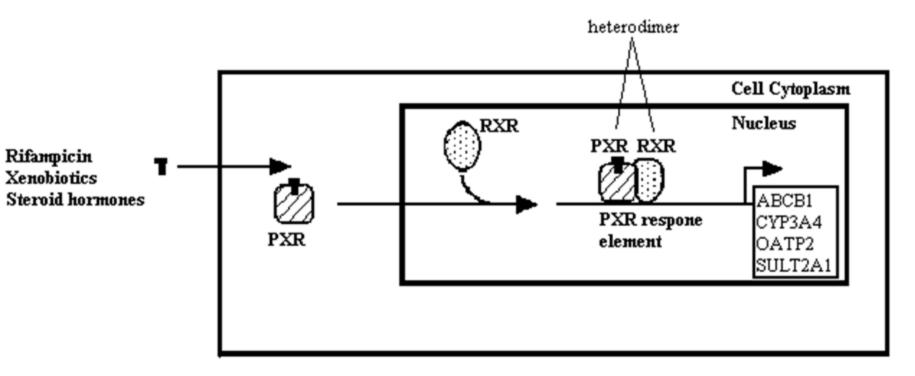
Metabolic diseases

Dyslipidemia Atherosclerosis Diabetes

Kidney diseases

Diabetic nephropathy Renal fibrosis

Rifampicin


- Potent antibiotic
- Antipruritic agent
- Potent inducer of PXR:

- potential benefits in cholestasis

NB idiosyncratic hepatitis in PBC

Rifampicin- potent inducer of PXR

Fig 6. Inducers of PXR such as rifampicin stimulate the intracellular proteins to forms heterodimers (e.g pregnane x receptor PXR with the retinoid x receptor RXR). This heterodimer then binds to DNA recognition motifs and induces transcription of the gene, therefore coordinately upregulating a number of ABC transporters such as ABCB1 (MDR1), OATP2, SULT2A1 and the enzyme CYP3A4.

Conclusion : Further Studies required?

Long term antibiotics in PSC*

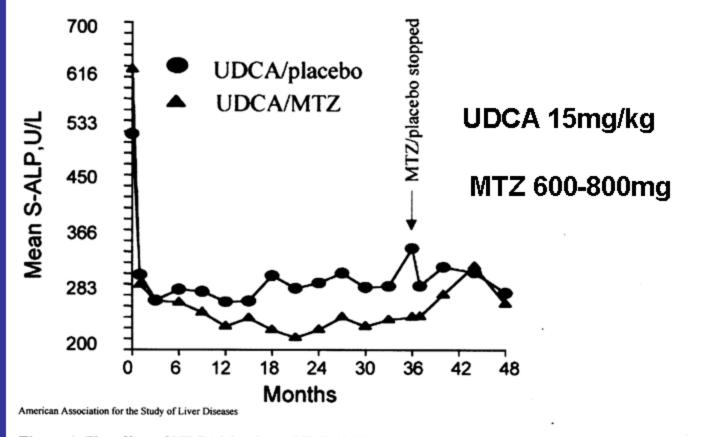


Figure 1. The effect of UDCA/placebo or UDCA/MTZ on mean serum ALP levels during 36 months.

*Farkkila et al ;Hepatology 2004;40:1379

Effect of therapy on Liver Histology (Stage& Grade) during 3 years follow up*

Change in histology	UDCA + placebo (n=36)	UDCA + MTZ (n=32)
Stage , n(%)		
Improvement	5 (14%)	11 (34%) p<.047
No change	20 (56%)	9 (28%) p<.022
Worsening	11 (30%)	12 (38%) ns
Grade ,n(%)		
Improvement	6 (17%)	14 (44%) p< .014
No change	15 (42%)	9 (28%) ns
Worsening	15 (41%)	9 (28%) ns
		*Farkkila et al;200

Treatment of PSC: Future Prospects

- New bile acids
- Nuclear receptor agonists
- Biologics: Adhesion molecule blockers
- Long term antibiotics

Delineation of genetic pathophysiology will lead to new therapeutic targets

PSC Partners Seeking A Cure

2010 Conference Agenda

In Conjunction with The Liver Center at Yale School of Medicine

Thank You!