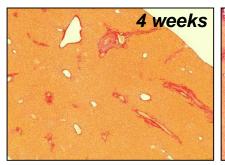
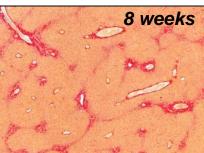
Probing new generation immunotherapy approaches using a new mouse model of PSC-associated cholangiocarcinoma

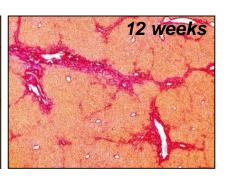
September 12th, 2025

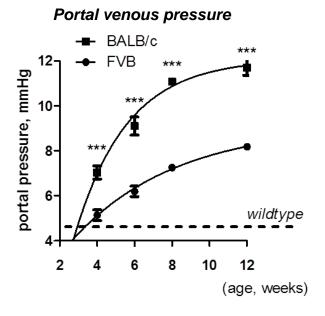
Yury Popov, MD, PhD

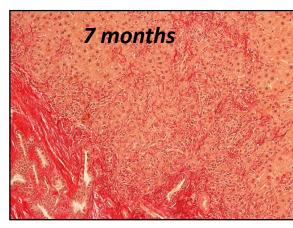
Beth Israel Deaconess Medical Center
Harvard Medical School

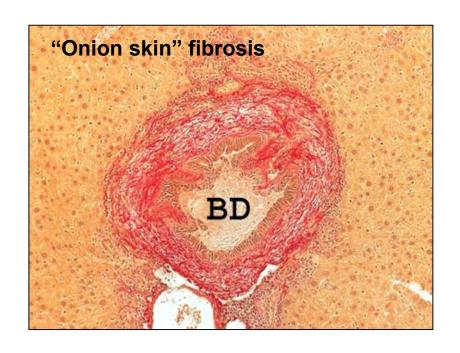

Primary sclerosing cholangitis and cholangiocarcinoma


 Cholangiocarcinoma (CCA) is a dreaded complication of PSC, patients carry a 400-fold higher risk for cholangiocarcinoma than the general population (Khan et al. Liver Int. 2019)


- 2016 PSC Partners / IPSCSG meeting in Yale:
 - FEW animal models of CCA;
 - NO animal model mimicking human CCA in PSC background (cholestasis, biliary injury and fibrosis)


Aim: Develop a new, "high fidelity" mouse model of intrahepatic cholangiocarcinoma arising in the settings of progressive sclerosing cholangitis


Abcb4(Mdr2)-/- mouse model of congenital, progressive PSC-like liver disease



- Early onset portal hypertension
- Pronounced ductular proliferations
- Progressive severe peri-ductal fibrosis
- Cirrhosis from age 7 months

Multi-prong approach to create a model of PSC-CCA in Mdr2-/- mouse

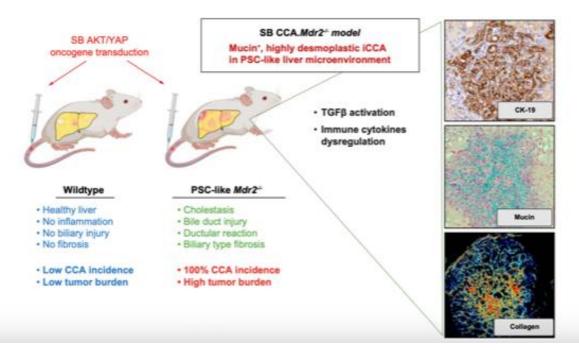
- Chemical-induced: (DAPM, "Epping jaundice" inspired) no CCA observed, abandoned
- Genetic manipulation with human oncogenes: retrograde biliary transduction low efficiency, abandoned
- Genetic manipulation with human oncogenes: hydrodynamic transduction (robust CCA induction in fibrotic mice, pursued)

2017 – received pilot funding from PSC Partners Seeking a Cure (Canada) to develop and characterize PSC-CCA model

<u>2021 – first investigational drug tested in partnership with biotech startup</u> (TGFb and integrin inhibitors)

<u>2024 – full scientific paper accepted</u> for publication by Journal of Hepatology, describing the PSC-CCA model generation and validation

Transposon-based oncogene integration in Abcb4(Mdr2)^{-/-} mice recapitulates high susceptibility to cholangiocarcinoma in primary sclerosing cholangitis


Authors

Pinzhu Huang, Guangyan Wei, Jesse D. Kirkpatrick, ..., Xin Chen, Gregory J. Gores, Yury V. Popov

Correspondence

ypopov@bidmc.harvard.edu (Y.V. Popov).

Graphical abstract

What did we learn?

- Model and Al-assisted automated drug efficacy read-out established
- PSC-CCA is immunologically distinct from sporadic CCA
- PSC-CCA tumors are "hot" but resistant to anti-PD-1 immune checkpoint therapy
- Another approach to unleash immune system via systemic TGFb blocking is effective
- Pre-clinical evidence of efficacy obtained for clinical-stage candidate, selective avb8 integrin inhibitor

Key takeaways

- We generated new high-fidelity CCA model (termed SB CCA.Mdr2-/- model) based on AKT/YAP oncogenic transduction that recapitulates increased susceptibility to CCA in PSC
- The model enabled studies into the mechanism of CCA risk in PSC and testing novel drug candidates
- Preliminary data for federal funding generated

This study represents a patient-driven, high impact study successfully addressing a knowledge gap and delivering a practical tool to advance new drugs into clinical trials