Overlap between Primary Sclerosing Cholangitis (PSC) and inflammatory bowel disease (IBD)

> Judy H. Cho, M.D. Yale University

Intestine-liver interactions

PSC and IBD: related inflammatory disorders

- PSC: 60-80% have IBD (UC more than CD)
- IBD
 - Ulcerative colitis: PSC present in 2.4-7.5%
 - Crohn's disease: PSC present in 3.4%
- Inflammation: generalized response to infection and or injury
 - Time course: infection/injury→inflammatory response→ healing/repair
 - PSC and IBD: the initial trigger is poorly defined
 - Organ-specific but also generalized (systemic)

Ulcerative colitis (UC) & Crohn's disease (CD): phenotypic features

- Peak age of onset: 15-30 years of age—immune system age effects
- Symptoms: diarrhea, abdominal pain, intestinal bleeding, growth retardation
- Intermittent inflammation/damage alternating with tissue repair
- CD: healing is variable: healing by fibrosis

Stricturing in IBD and PSC

Stricture: B2 behavior

Fistulae: B3Cholangiogram:behaviorPSC

PSC & IBD

- Timing: diagnoses can be at anytime—the disease courses are not related to each other
- Location
 - More often extensive disease
 - Rectal sparing (?)
 - Often with backwash ileitis
- Increased risk of colorectal neoplasia (pre-cancerous or cancerous changes)
 - 4.79 x compared to UC without PSC. Right-side > left-side
 - Need colonoscopic surveying
- Intestinal inflammation: more often relatively quiescent
- Genetic approaches to define the earliest disease stages—identify new therapies

Human genetic approaches: 2006-2010

- Genome wide association studies (GWAS)
 - Type several hundred thousand markers
 - Need large numbers of cases: 1000-4000
 - Identified > 70 genetic regions associated in IBD
 - PSC-small studies: less common disease than IBD
 - Germany
 - Norwegian-US (Mayo clinic)
 - But: many genetic regions common between chronic inflammatory diseases—same genes between PSC & IBD?

PSC genetics: the MHC (major histocompatibility complex) is the major genetic factor for PSC & UC

- MHC complex (chromosome 6p): most genetically diverse region in the genome
- Recognition of "self" and "non-self"
- MHC Class I and II genes
 - Class I: present on all cells
 - Class II: present on special cells

Within the MHC: different association patterns between PSC & UC

Classes of genes involved in IBD: implications for therapy

Theories on the overlap between PSC & IBD

- Same genes?
 - Not thus far—but present PSC genetics studies have been too small to tell for sure
- Shared functional defects?
 - Same epithelial defects?
 - Tendency toward healing by scarring/fibrosis?
- Interacting systemic/circulating factors
 - IBD→PSC: Increased circulation of intestinal microbial components (portal circulation)
 - PSC→IBD: Toxic biliary factors secreted→ increased colon cancer risk (right-side)

New Genetic & Genomic approaches: Sequencing

- DNA
- RNA (tissue-specific—sequencing intestine, liver, peripheral blood white cells)
 - $-RNA \rightarrow protein$
 - Small RNAs: very stable, regulate expression of other genes

Screening mechanisms for new therapies

- High throughput screens to quickly test thousands of new therapies
- Key: identify the functional readout of interest
- Animal models
- Early studies in humans

Value of human-based research

- Intensive study of individual patients
 - complex disease with highly variable course
- Digital revolution & data deluge: unprecedented capacity to generate enormous datasets
 - Computional requirements significant
- ibd@yale.edu